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Abstract
Deformable motion models are useful for analysis of

dynamic datasets exhibiting non-rigid motion, as in gated car-
diac PET. We employ an algorithm that obtains a vector field to
describe the relative motion of each voxel between two data
sets. The estimation is based on a two-component cost func-
tion: an image matching component, and a motion field
smoothness component. An important aspect of obtaining an
accurate motion field estimate is properly balancing the weight
between the two cost components. We show that by using a
material elastic model inspired by continuum mechanics, an
intuitive interpretation of the weighting factors for the smooth-
ness constraint may be obtained. Further, we show that mis-
matches between actual material elastic parameters and those
used by the estimation algorithm can lead to greater estimation
error. Results are validated using an ellipsoidal phantom simu-
lating compressible and incompressible deformations.

I. INTRODUCTION

Establishing a correspondence between voxels in two
image volumes from a gated cardiac data acquisition is neces-
sary to make wall motion estimates or calculations on match-
ing tissue regions. Because the myocardium is a non-rigid
structure that bends and stretches during the cardiac cycle, sim-
ple motion models such as a six parameter rigid-body descrip-
tion are inadequate to describe the motion, and a more complex
deformable motion model must be used.

One technique to describe the motion is to use a dense vec-
tor field, called a motion field, which describes the relative dis-
placement of each voxel, and thus establishes a voxel-by-voxel
correspondence for every point in two image volumes. Algo-
rithms to estimate this motion field find their roots in the two-
dimensional optical flow literature. In simple terms, these algo-
rithms are all based on two general constraints. First is an
image matching constraint that serves as a driving force trying
to pull voxels in a source volume so that they deform to match
the image in a reference volume. The second constraint
imposes a regularization on the motion field, and tries to
restrict the large domain of possible deformations to those
which are more smooth and more physically likely. For exam-
ple, Song and Leahy [1] use a 3D generalization of an optical
flow algorithm that expresses the regularization constraint in
terms of two penalties. A general smoothness constraint penal-
izes large values in the gradient of the motion field, and the

other constraint penalizes motion fields with non-zero diver-
gence. A problem with this approach is that it is difficulta pri-
ori to choose factors which appropriately weight the two
regularization components against each other. We address this
problem by using a regularization function inspired by contin-
uum mechanics. As the motion field deforms the source vol-
ume, it is penalized by the strain energy of a similarly
deformed uniform elastic object. By choosing elastic parame-
ters which are appropriate for the physical object being
deformed, we can thus have better intuition regarding the
appropriate weight of regularization components.

II. M ETHOD

The motion estimation framework is described as follows.
Define two 3D density fields, a source volume, , and a
reference volume, , where  represents the
voxel index. A dense Lagrangian motion field is defined as

, and the deformed volume of  is
defined as . With these definitions, we can
express an image matching error term, , given by

, (1)

and a regularization term, , dependent on the spatial
derivatives of the motion field. A constant term, , is used to
weight the strength of the image matching component relative
to the regularization component. The overall estimation prob-
lem is to find a motion field consistent with elastic material
properties that best matches the deformed volume to the refer-
ence volume via a minimization of:

. (2)

We describe the regularization function as the strain energy
of a linearly elastic uniform isotropic material. We may
express the strain energy at a given voxel by the relation [2]:

(3)

where we use the notation for partial derivatives: ,
and have omitted  from the derivative terms to simplify nota-
tion. The terms,  and , are elastic weighting terms called
the Lamé constants. These can be written in terms of intuitive
physical parameters,E, called the Young’s elasticity modulus
and , called the Poisson ratio:
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E relates the tension of the object to its stretch in the same
direction, and  is the ratio between lateral contraction and
axial extension. As a simple example, consider the uniaxial
stretching of a rectangular object in two dimensions. A change
in length along the direction of force from  to , and a
corresponding length change along the perpendicular axis from

 to  will be described by the Poisson ratio as follows:
.

It can be seen that the term in the equation penalizes non-
zero divergence and the term penalizes sharp discontinuities
in the motion field. For highly incompressible fields, the Pois-
son ratio approaches a maximum of 0.5, which yields a diver-
gence term, , much larger than the  term. In the limit of a
completely incompressible material, the Poisson ratio is
exactly 0.5 and any deformation will be volume preserving.
Conversely, stretching a compressible material will increase
volume and squeezing it will decrease the volume.

A formulation based on continuum mechanics like this one
allows us to more intuitively set weighting factors which better
model the expected deformations exhibited by an object being
imaged. For example, in imaging of the heart, it is known that
myocardial tissue is nearly incompressible [3]. Therefore, it
should be expected that regularization weighting terms repre-
senting a Poisson ratio close to 0.5 would be most appropriate
to describe the deformation of this tissue.

Minimization of the overall energy function is achieved by
using a Taylor series expansion of the motion field and the cal-
culus of variations on the resulting functional. Assuming the
true motion field is , and the current estimate is , then a
Taylor series approximation of can be expressed in terms
of a delta motion field, , as

. Substituting the expression,
, for in the constraint equations results in a quadratic

functional in  that can be minimized via the calculus of
variations [4]. The resulting Euler-Lagrange equations are
solved using finite differencing techniques and a conjugate gra-
dient method. For the simulations presented in this paper, Neu-
mann boundary conditions were enforced, which constrains
various components of the motion field gradient at the volume
edges [1]. Solution to the overall problem is carried out in a
two-step process involving two loops. In the outer loop, the
current estimate of the motion field, , is used in the non-lin-
ear calculation of the current deformation volume, . Then,
in an inner loop, the linear approximation is used in a conju-
gate gradient algorithm to compute the best  satisfying the
constraint equations. This delta motion field is then added to
the current total motion field and the process is repeated. Fur-
ther details on the overall motion estimation technique may be
found in [5], [6]. Note that the linear approximation used in the
Taylor series approach assumes that the maximum norm of
is relatively small, else the algorithm would have difficulty
converging to the true motion field, . We have found that for
the simulations presented here, the assumption is valid. For
cases where the image deformation is too large for the algo-
rithm to converge to the correct motion field, a multi-scale

approach may be used [6].

III. RESULTS

To test the hypothesis that properly chosen elastic parame-
ters can improve a motion estimation algorithm, a 3D hollow
ellipsoidal phantom was created. The phantom was defined
using a 64×64×16 voxel volume. Background voxels were set
to zero. In order to test whether the algorithm could track fea-
tures in the phantom, voxels within the boundaries of the inner
and outer ellipsoids were set to an intensity governed by a sinu-
soidal pattern varying along the X-axis.

 The model was allowed to deform into two different con-
figurations. The first of these represents an incompressible
deformation, where expansion along one axis was matched by
contraction along the other. In the second configuration, the
phantom contracted along one axis only, thus representing a
compressible deformation. More exactly, the boundaries of the
inner and outer ellipsoids for either configuration are defined
by the equation:

(5)

where describe the ellipsoid size along each axis,
are parameters controlling the global size of the inner and outer
boundaries, and  represent stretch factors that can be
used to describe a deformation. The sinusoidal voxel intensity
relation may be similarly defined to properly account for defor-
mation of the ellipsoid:

(6)

Fig. 1 shows a slice through the reference and source volumes
for the incompressible and compressible cases. The source vol-
umes define the undeformed configurations when all stretch
factors are set equal to one. The reference volume represents
the deformed configuration where at least one of the stretch
factors is not equal to one. For the incompressible deformation,

; for the compressible deforma-
tion, . Use of this type of deforma-
tion allows an analytical expression for the actual motion field.
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Fig 1. Hollow Ellipsoid Model. Central slice through the refer-
ence volume (left), which represents the volume in the deformed
state. The source volume used in an incompressible deformation of
the reference is seen in the middle; the source volume used in a
compressible deformation is also shown (right). An edge map of the
reference volume is overlaid on both source volumes to show the
relative motion.
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Assuming the center of expansion and the ellipsoid center are
at the origin, this is:

(7)

The motion estimation algorithm was run for a range of
physically valid Poisson ratios (between 0 and 0.5), and the
accuracy of the estimated motion field was calculated. As a fig-
ure of merit, we use the magnitude difference between esti-
mated and true motion fields within the region of the
ellipsoidal shell. The sum of squared difference between the
reference and the deformed volumes is also calculated as a sec-
ond figure of merit.

Fig. 2 shows the resulting deformed volumes and difference
images for three different values of the Poisson ratio. In all
cases, Young’s modulus was set to 1.0 and the same image
weighting term, , was used. It is first seen that the algo-
rithm performed fairly well for all cases shown here. For exam-
ple, the voxel size for this phantom is 2×2×4 mm and the
motion error was calculated over 6872 voxels representing
interior the source ellipsoid. Therefore, the average motion
error magnitude for the worst case in this example was still just
12478/6872 = 1.8 mm, or less than one voxel dimension. The
main point of the figure though, is that it shows the expected
result that modeling the material as too compressible, where

, will result in some deformation artifacts. These are

especially evident by comparing the difference images in the
bottom row. On the other hand, a somewhat unexpected result
is seen in that modeling the material as too incompressible can
also be non-optimal. Similar behavior is seen in the case of the
compressible deformation.

Figure 3 plots the motion estimation error verses different
values of the Poisson ratio for the incompressible and com-
pressible simulation cases. It is seen that in general, for the
incompressible case, choosing a Poisson ratio near 0.45, which
represents a fairly incompressible material, appears to produce
the best motion estimate and deformed volume. For the com-
pressible case, choosing a Poisson ratio closest to 0.0 appears
best. This behavior verifies the assumption that matching the
elastic material parameters in the strain energy of the motion
estimation algorithm to the actual elastic properties of the
underlying deforming object will improve the estimated
motion field.

The unexplained slight discrepancy between the algo-
rithm’s optimal performance at rather than for

u x αx 1–( ) v y αy 1–( )= w z αz 1–( )=,,=

Fig 2. Incompressible Deformation Results.Deformed vol-
umes for the incompressible case using three different values of the
Poisson ratio. Deformed volumes and an edge map of the reference
volume shown in the top row indicate that the algorithm worked
fairly well in all cases. Subtleties between the models are more evi-
dent in the difference images between the reference and the
deformed volumes, shown in the bottom row. Since the material is
incompressible, one would expect a modeled Poisson ratio closest
to 0.5 to perform the best. Comparing the images and the figures of
merit, it is seen that modeling the material as too compressible
(Poisson ratio=0) produces inferior results. However, modeling the
material as too incompressible also appears non-optimal.
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Fig 3. Motion Estimation Results.Estimation error vs. Pois-
son ratio for incompressible and compressible deformations. In
both cases, using a Poisson ratio that matched the true value in the
estimation algorithm produced better results.
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the incompressible case may be understood by considering the
strain energy of the true motion field for different values of the
Poisson ratio. For the incompressible case of pure dilation
along the X and Y axis, the ratio of lengths for line segments in
the source to deformed volumes is given by and for the
X and Y axes, respectively, where is a stretch factor. Here, a
stretch factor of 0.8 was used, and the resulting strain energy
has only two non-zero terms, , and . For
the compressible case of a true object characterized by a Pois-
son ratio, , the stretch is only along the Y axis. The only
non-zero term in the strain energy function in this case is

.
Using these motion fields, we can plot the resulting strain

energy as we vary the Poisson ratio. The results are seen in Fig.
4, along with the true motion fields for the compressible and
incompressible deformations. Vectors in the motion field repre-
sent the direction and magnitude of the motion component in
the displayed image plane. The plot shows that for the com-
pressible deformation, the minimum strain energy occurs at a
Poisson ratio equal to zero. However, for the incompressible

case, it is seen that the minimum occurs not at 0.5, but at a
value near 0.45. This characteristic is consistent with the
motion estimation results. That is, the motion estimation algo-
rithm appears to favor the motion field configuration with the
minimal strain energy.

For matching volumes where image noise is present, the
material model parameter selection becomes more crucial.
Here the restraining properties of the elastic model are useful
for preventing false matches between spuriously correlated
voxel intensities in the source and reference volumes. An
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Fig 4. Analytical Strain Energy For True Motion Field.
Strain energy vs. Poisson ratio for incompressible and compressible
motion fields (top). Motion fields for the simulated incompressible
and compressible deformations are seen in the bottom row. For the
compressible case, minimum strain energy occurs for a Poisson
ratio equal to zero. For the incompressible case, the minimum
occurs at a value near 0.45. These results are in agreement with the
motion estimation results in Fig. 3.
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Fig 5. Motion Estimation Results-Noisy Case.Noisy refer-
ence volume (a), source volume (d), and deformed volumes using

 (b) and  (c). Using the less compressible model
produced a deformed volume with less motion field error (10192
vs. 14340) and less image matching error (848 vs. 950). Squared
difference images between the noiseless reference and the
deformed volumes are seen in (e), where the compressible model
was used, and in (f), where the incompressible model was used.
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example of this characteristic can be seen by comparing the
results of using the incompressible phantom where additive
Gaussian noise has been included in both the reference and
source volumes. Seen in Fig. 5, the estimation using a Poisson
ratio representing a fairly incompressible material ( )
produced superior results to the estimation using a compress-
ible parameter ( ). Comparing the squared image differ-
ence between the deformed volume and noise-free reference, a
12% increase in error results when using the more compress-
ible parameter. Likewise, using the flow magnitude error mea-
sure, the more compressible model produced a flow field with
41% greater error. Fig. 6 summarizes the noisy results for other
values of the Poisson ratio. It is seen that the performance of
the algorithm in the noisy case is similar to the noise-free
result.

Fig. 7 gives information regarding the effect of changing
the image error weighting term, . Recall that the difference

between the reference and the deformed source volumes serves
as the driving force which further deforms the source volume
in an effort to better match the two. Increasing  thus forces
the source volume to stretch “harder” to match the reference.
The figure plots the error between the deformed noisy volume
and the true, noiseless reference, as well as the motion field
error magnitude for various image error weights in an incom-
pressible test case. Two different Poisson ratios are used: 0 and
0.45. It is seen that for very low values of , the error mea-
sures are large for both modeled Poisson ratios. Here, there is
simply not enough force to adequately stretch the source vol-
ume into the shape of the reference. However, at the other
extreme, too great a weighting on the image matching criterion
encourages the algorithm to match not only the general shape
between the two volumes, but also to match spuriously corre-
lated noise spikes as well. It is desirable to use only as much
image matching force as necessary, and use regularization
forces from the strain energy to prevent physically unrealistic
deformations. This is more likely to occur when we have
appropriately modeled the true elastic behavior of the deform-
ing material.

IV. DISCUSSION

Results lead us to believe that by more accurately modeling
the physical elastic properties of cardiac tissue and other struc-
tures within the field of view in a cardiac data set, we may
obtain a more accurate estimate of the motion field describing
the non-rigid deformation. The results also help to understand
formulations like those of Song. They used the following regu-
larization function composed of a divergence-free component
weighted by , and general smoothness component weighed
by :

(8)

Comparing Song’s regularization function to the strain energy
function used in this paper, one can see similar components. In
fact, it can be shown that the resulting Euler-Lagrange equa-
tions are identical if we set , and .
The advantage of using the strain energy form is that we obtain
extra intuition knowing that the Lamé constants can be related
to real physical phenomena seen in elastic materials. For exam-
ple, the Poisson ratio for all known elastic materials is a posi-
tive number between 0 and 0.5. Using the relation of equation
(4), Song’s smoothness term must therefore always be
weighted less than the divergence term if we wish to model
physically plausible elastic material behavior. This may
explain why poor results are obtained if the motion field is
over-smoothed, as was demonstrated by Gorce, et. al. in their
investigation of the effects of different weightings of smooth-
ness and divergence penalties in deformable motion estimation
algorithms [7]. That is, motion fields using a relatively large
value implicitly imply that a negative or small value for the
Poisson ratio is assumed. If the deforming material is truly
incompressible, we would then expect the motion estimation
algorithm to produce inferior results using a large .

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

0 10 20 30 40 50 60 70 80 90 100

M
ot

io
n 

Fi
el

d 
E

rr
or

Image Error Weighting

Poisson=0.0
Poisson=0.45

800

850

900

950

1000

1050

1100

1150

0 10 20 30 40 50 60 70 80 90 100

Sq
. I

m
ag

e 
D

if
f

Image Error Weighting

Poisson=0.0
Poisson=0.45

Fig 7. Image Weighting Effects-Noisy Case.Performance of
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volume deform. Too little force and the source volume will not
deform enough to adequately match the reference. However, too
large a weighting drives the algorithm to match spurious noise
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We note that the strain energy model used here assumes
infinitesimal displacements. In fact, this explains why the
strain energy for a motion field representing an incompressible
deformation does not obtain a minimum for a Poisson ratio of
0.5. We see that in our simple example using an incompressible
stretch ratio of 0.8, that the motion field divergence does not
sum to zero (i.e ). Only in the case of infini-
tesimal displacements does the divergence approximate zero
[8]. For small, but finite displacements, like the example used
here, the non-zero divergence component can add appreciably
to the strain energy function as the Poisson ratio, and likewise
the  term increases. It is known that the relative displace-
ments, or strain, seen in the deforming heart can have large
stretch factors similar to the values used in this paper on the
ellipsoidal phantom [9]. Strain energy models which include
higher order terms from the strain tensor may therefore merit
further investigation. These models would more accurately
match the motion estimation regularization function to the
underlying elastic behavior; however, because they involve
higher order terms of the motion field spatial derivatives, they
would be more computationally costly and perhaps more sensi-
tive to noise [10]. On the other hand, it is known that cardiac
tissue exhibits considerable non-linear elastic behavior which
is not modeled by a finite strain model that includes higher
order terms, so the simple infinitesimal strain energy model
with partially compressible assumptions may be just as suffi-
cient a model to regularize a motion field.

The focus of this paper has been how to properly choose
regularization weighting terms in the overall cost function
against each other to best constrain a motion field for a specific
type of deforming material. We have only touched on the other
free parameter in the cost function, , which weights the regu-
larization cost against the image matching component.
Whereas use of an elastic material model is fairly straightfor-
ward for the regularization terms, finding a physical analogy to
the “driving force” of the image difference term is more diffi-
cult. For the case of cardiac data, the actual force driving the
cardiac tissue to deform is a combination of active muscle con-
traction and hydrostatic pressures. Relating these forces to a
weighted voxel difference would require a more detailed
model. Until such a model is available, we have little alterna-
tive but to empirically choose image weighting terms that give
reasonable matches. Fortunately, as was displayed in Fig. 7, the
choice of an optimal image weighting term does not appear to
be a parameter that needs to be finely tuned, for similar perfor-
mance is obtained using a wide range of  values.

V. SUMMARY

Results show that by more accurately modeling the physi-
cal elastic properties of a relatively simple deforming ellipsoi-
dal phantom, we may obtain a better estimate of the vector
field describing the motion. We hope that by better understand-
ing the behavior of the estimation algorithm for simple materi-
als, we can improve its performance for describing the motion
field demonstrated by a more complex object, as would be seen
in the data from a gated cardiac study. Results indicate, for

example, that in order to better follow features for incompress-
ible cardiac tissue, then this tissue should be characterized by a
material model that enforces incompressibility. We acknowl-
edge that the elastic properties of cardiac tissue are certainly
different from the adjacent blood pool and lung tissue. How-
ever, by separately describing each tissue class with appropri-
ate physical elastic parameters, it is hoped that feature tracking
may be improved for gated cardiac PET.
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